Functional analysis of human cardiac gap junction channel mutants.
نویسندگان
چکیده
The connexins form a family of membrane spanning proteins that assemble into gap junction channels. The biophysical properties of these channels are dependent upon the constituent connexin isoform. To begin identifying the molecular basis for gap junction channel behavior in the human heart, a tissue that expresses connexin43, we used site-directed mutagenesis to generate mutant cDNAs of human connexin43 with shortened cytoplasmic tail domains. Premature stop codons were inserted, resulting in proteins corresponding in length to the mammalian isoforms connexin32 and connexin26, which are expressed primarily in liver. All constructs restore intercellular coupling when they are transfected into SKHep1 cells, a human hepatoma line that is communication deficient. Whereas wild-type connexin43 transfectants display two distinct unitary conductance values of about 60 and 100 pS, transfectants expressing the mutant proteins, from which 80 and 138 amino acids have been deleted, exhibit markedly different single-channel properties, with unitary conductance values of about 160 and 50 pS, respectively. Junctional conductance of channels composed of wild-type connexin43 is less voltage-sensitive compared with transfectants expressing wild-type connexin32. However, neither of the connexin43 truncation mutants alters this relative voltage insensitivity. These results suggest that the cytoplasmic tail domain is an important determinant of the unitary conductance event of gap junction channels but not their voltage dependence. Furthermore, since the mutant connexins are missing several consensus phosphorylation sites, modification of these particular sites may not be required for membrane insertion or assembly of human connexin43 into functional channels.
منابع مشابه
Molecular characterization and functional expression of the human cardiac gap junction channel
Gap junctions permit the passage of ions and chemical mediators from cell to cell. To identify the molecular genetic basis for this coupling in the human heart, we have isolated clones from a human fetal cardiac cDNA library which encode the full-length human cardiac gap junction (HCGJ) mRNA. The predicted amino acid sequence is homologous to the rat cardiac gap junction protein, connexin43 (Be...
متن کاملA mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant.
Gap junctions are unique intercellular channels formed by the proper docking of two hemichannels from adjacent cells. Each hemichannel is a hexamer of connexins (Cxs) - the gap junction subunits, which are encoded by 21 homologous genes in the human genome. The docking of two hemichannels to form a functional gap junction channel is only possible between compatible Cxs, but the underlying molec...
متن کاملFunctional roles of the amino terminal domain in determining biophysical properties of Cx50 gap junction channels
Communication through gap junction channels is essential for synchronized and coordinated cellular activities. The gap junction channel pore size, its switch control for opening/closing, and the modulations by chemicals can be different depending on the connexin subtypes that compose the channel. Recent structural and functional studies provide compelling evidence that the amino terminal (NT) d...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 88 9 شماره
صفحات -
تاریخ انتشار 1991